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Supports

Consider an open subset U ⊆ Rn and a continuous function f : U → R. We

can speak about the set {x ∈ U : f(x) ̸= 0}, and in particular can talk about

its closure in U , the support of f .

The usage of this comes in large part when the support is a compact set,

then f has most of the nice properties of continuous functions from compact

sets.

There is, however, a problem when defining compactly supported Lp functions.

The problem is that they are only an equivalence class of functions, and so

the support, as defined before, is not well-defined.

However, we may reinterpret the support as the complement of an open set,

the largest open set where f is zero. This leads us to even defining supports for

distributions.

Definition 0.1. Given a distribution ϕ : C∞
c (U) → R, we define its Support

as

supp(ϕ) =
⋃

V ∈presupp(ϕ)

U

where presupp(ϕ) is the collection of open subsets V ⊆ U such that ϕ(f) = 0
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for each f ∈ C∞
c (U) with supp(f) ⊆ V .

Given a function g ∈ Lp(U), or continuous, or smooth, define that support as

the support of ϕg(see the problem set 1).

Exercise 0.1. Show this definition agrees with the usual one when g is contin-

uous.

This is, is some sense, the right way to think about the support of distri-

butions, since their behaviour is defined by their actions on functions on open

sets, and so the support should be defined in terms of open sets.

Mollifiers(Corrected)

Suppose that U ⊆ Rn is open and K ⊆ U is compact, and define W k,2
1,K = {f ∈

W k,2(U) : supp(f) ⊆ K}. Then we have

Definition 0.2. There exists t > 0 and a family {Fε}ε∈[0,t) of linear operators

W k,2
1,K → C∞

c (U,R) ∩W k,2(U) with the following properties:

1. Fε is bounded uniformly from W k,2
1,K → W k,2(U), where W k,2

1,K has the

induced norm.

2. For any operator of the form

(Pf)(x) =

m∑
α=1

n∑
i=1

aαi (x)
∂fα
∂xi

(x) +

m∑
β=1

bβ(x)fβ(x)

where aαi , b
β ∈ C∞(U) it holds that FεP − PFε is a uniformly bounded

operator W k,2
1,K → W k,2(U). (Here α is a number, not a multi-index)

3. limε→0 ∥Fεu− u∥ = 0 for any u ∈ W k,2
1,K

4. supp(Fεu) ⊆ {x ∈ U : d(x,K) ≤ ε} for any u ∈ W k,2
1,K
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We call such a family a mollifier. Of note is that t depends crucially on K. In

particular, t < dist(K, ∂U).

We can also find similar results for W k,2
m,K = {f ∈ W k,2

m (U) : supp(f i) ⊆

K, ∀i = 1, ...,m}

A note about terminology: I will often use H1 = W 1,2.

Cohomology

Consider the following problem: You would like to figure out how to rigorously

define what a “hole” in R2 is. Roughly speaking, it should be a disk that cannot

be filled in fully.

Such a disk should be represented as a circle that isn’t the boundary of the

interior disk. So we should define a (two-dimensional) hole as a closed curve S

such that S ̸= ∂D for any open set D.

While there is a way to make this completely rigorous, we note the following, if

S = ∂D then for any closed 1-form ω it holds that

∫
S

ω =

∫
∂D

ω =

∫
D

dω = 0

On the other hand, note that if

c1, c2

are two paths with the same start and end-points, then we should have

∫
c1

ω =

∫
c2

ω

if either the loop formed by c1, c2 contains no holes, or the form is exact.

We also see that there is some sense of duality between ∂, d. In particular,
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L(S)(ω) =
∫
S
ω has

L(∂D)(ω) = L(D)(dω)

and so one might expect closed but not exact forms to represent holes, especially

when considering the usual form dθ on R2 − {0}. In many cases, this is true!

There is however, a much better way of thinking about cohomology, especially

in geometric analysis: as obstructions to piecing together local data to global.
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